The Evolution of Reeter Operations

MCI Reefer Conference 2025

16-11

Sustainability Leaps in Reefer Operations

4

11 13 13 11

The Evolution of Reefer Operations MCI Reefer Conference 2025

Flensburg

May 14, 2025

SPEAKER

SØREN KROGH HANSEN CHIEF TRADER, GREEN FUELS & TEAM LEAD

Location: Middelfart Education: cand.merc finance 3 years experience in Commodities 15 years experience in Fixed Income

USTC | UNITED SHIPPING TRADING COMPANY

USTC GROUP

USTC ORGANISATIONAL CHART Mia Østergaard Rechnitze Torben Østergaard-Nielsen Nina Østergaard Borris **SELF** INVEST SCG USTC 6 Bunker **SDK** t, 2/1 G(R)M unıt'it BUNKEREX CM BIOMASS FREJA UNI-TANKERS

TORBEN ØSTERGAARD FOUNDER AND CO-OWNER OF USTC

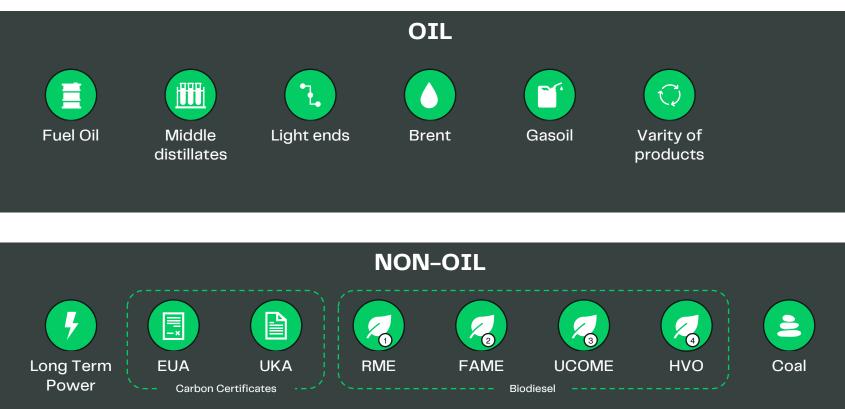
NINA ØSTERGAARD CEO AND CO-OWNER OF USTC

MIA ØSTERGAARD CGO AND CO-OWNER OF USTC

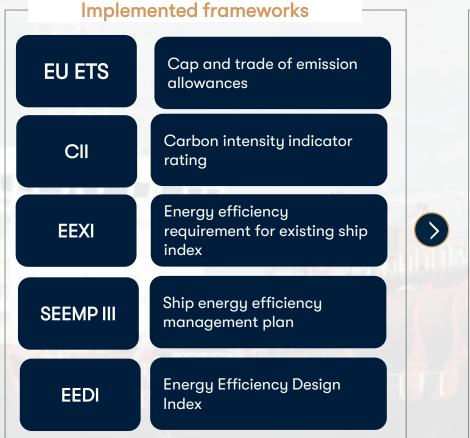
GLOBAL RISK MANAGEMENT | WHO WE ARE

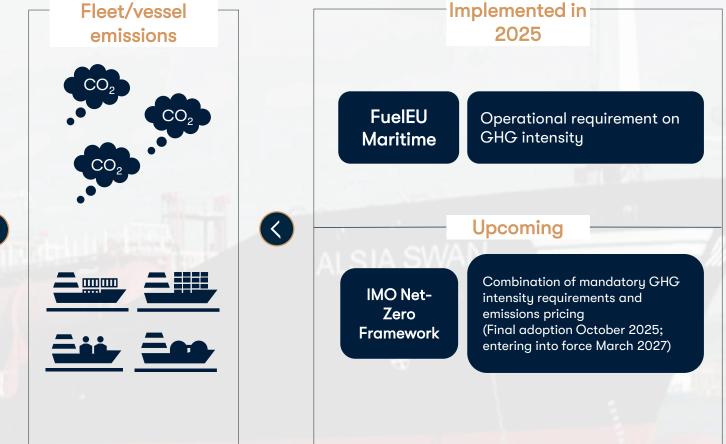
Global Risk Management is a leading provider of customised hedging solutions for the management of price risk on energy expenses.

Combining in-depth knowledge of the energy market, finance and transport, we work with clients to protect their margins from the risk posed by notoriously volatile energy prices.



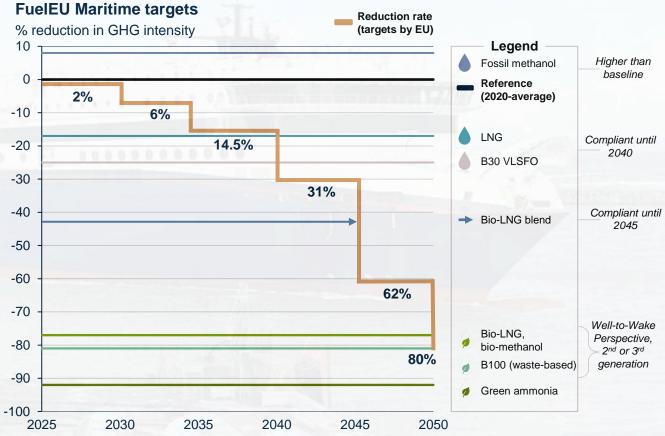
The Global Risk Management Group consists of three companies of which one is licensed with the Danish FSA as an **investment firm**. This means that we are subject to the rules and regulations of MiFID II (Markets in Financial Instruments Directive) in the EU area. MiFID legislation regulates firms providing services to clients linked to "financial instruments" – like we do with energy price hedging.





TRADING PRODUCTS OIL & NON-OIL

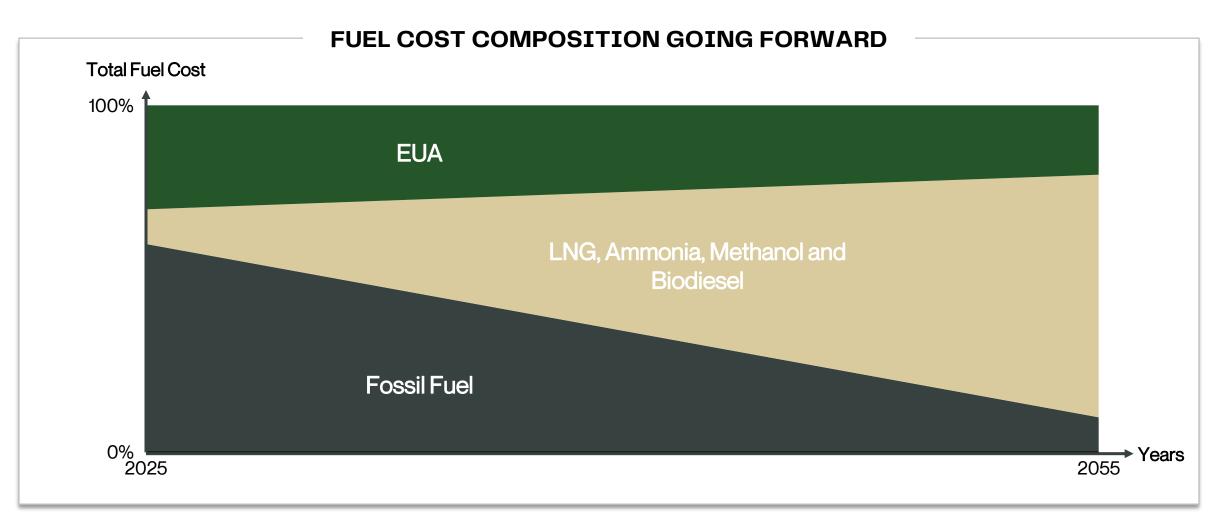
REGULATORY FRAMEWORK DRIVING THE GREEN TRANSITION

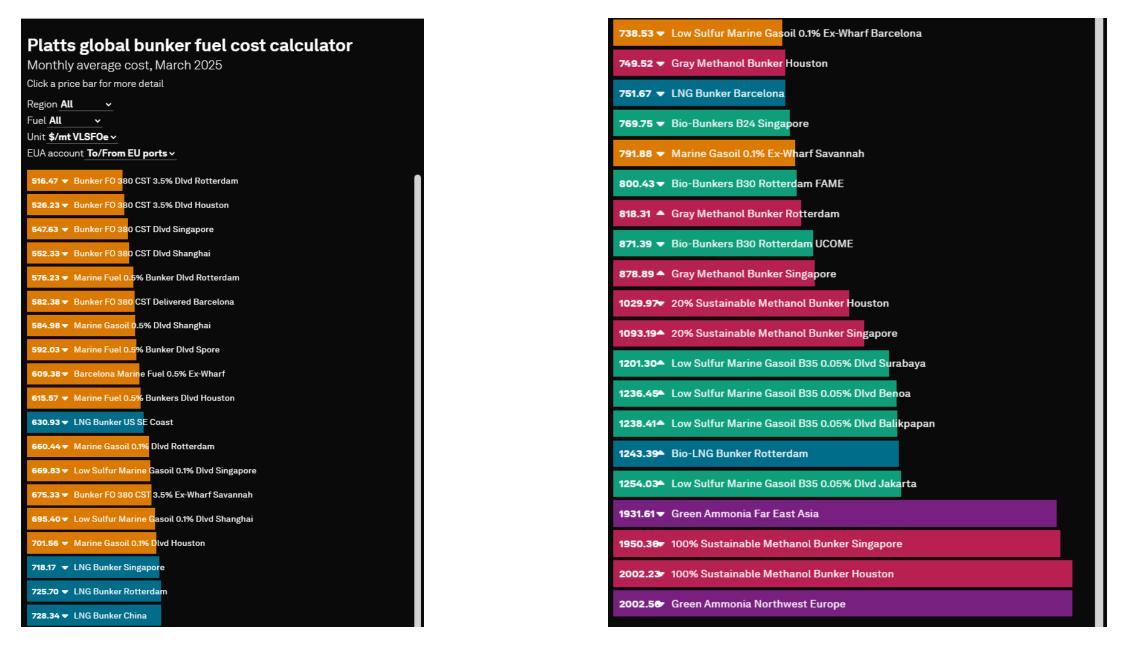

COMPLIANCE WITH FUELEU MARITIME

FEUM GOAL: TO INCREASE THE USE OF RENEWABLE AND LOW-CARBON FUELS AND REDUCE GHG EMISSIONS FROM THE MARITIME SECTOR

Requirement to the yearly average Wellto Wake CHC intensity of approx used

to-Wake GHG intensity of energy used on-board:


- All ships above 5,000 GT transporting passengers or cargo (equals to 55% of all ships and 90% of all emissions from the maritime sector)
- 50% of energy use into or out of EEA, 100% of energy use between and within EEA ports.
- Compliance can be banked, borrowed and pooled.
- Potential mandatory 2% RFNBO* use from 2034.
- Penalty of 2.400 EUR x non-compliant emissions in tonnes VLSFO-equivalent.


Consideration of EU ETS & FuelEU Maritime

FUEL COST COMPOSITION | EU MARITIME

RELEVANT FEEDSTOCKS AND BIOFUELS FOR THE MARINE SECTOR

Feedstocks

1st generation: Edible biomass, food crops, e.g. soybean oil, rapeseed oil, palm oil

2nd generation:

Non-food crops and waste biomass, e.g. used cooking oil, tallow, POME, damaged crops, cover crops, residual oils

3rd generation: Algal biomass

----' Most relevant feedstocks for Marine¹

Processing technology and End-product

BIODIESEL (FAME)

Through <u>transesterification</u> glycerine is separated from the feedstock, which creates fatty acid methyl esters (FAME).

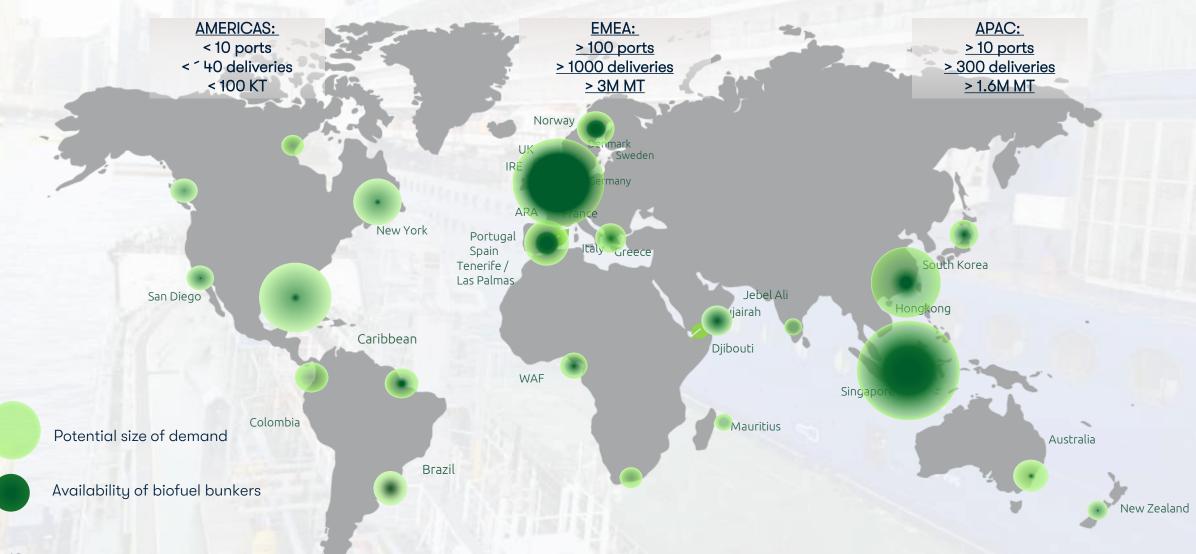
HVO (RENEWABLE DIESEL)

Produced by hydrogenation and hydrocracking of feedstocks using hydrogen and catalysts.

3

CO-PROCESSED MARINE GASOIL

Refining through <u>co-processing</u> of feedstocks together with fossil oil in a fossil fuel refinery.


BLENDED PRODUCTS (Biofuels + Gasoil/Fuel Oil) Meeting ISO 8217 specs, except the FAME content.

FAME = Fatty Acid Methyl Ester = Biodiesel

Feedstocks	Type of Biofuel	End-product							
UCO: Used cooking oil	FAME (Biodiesel)	UCOME	Biodiesel from used cooking oil						
Tallow: Animal fat	FAME (Biodiesel)	ТМЕ	Biodiesel from animal fats						
POME – Palm oil mill effluent	FAME (Biodiesel)	POME ME	Biodiesel from POME						

12 1: Fuel EU Maritime excludes 1st generation feedstocks. IMO requires min. 65% GHG savings of biofuel.

GLOBAL MARINE BIOFUELS SUPPLY MAP

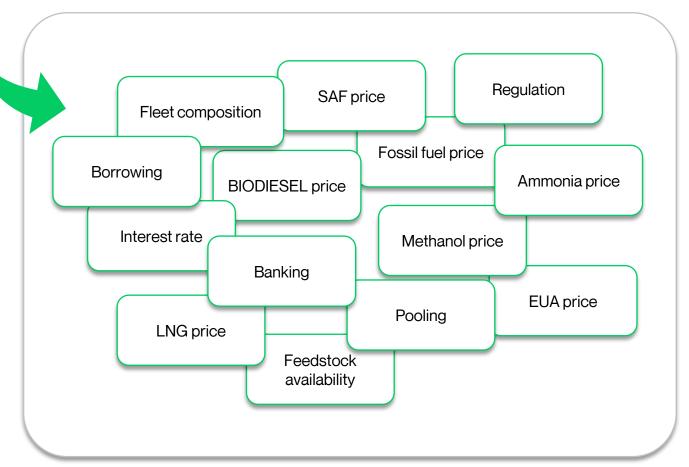
RISK MANAGEMENT | FUEL EU MARITIME

/		`
(Ú.)

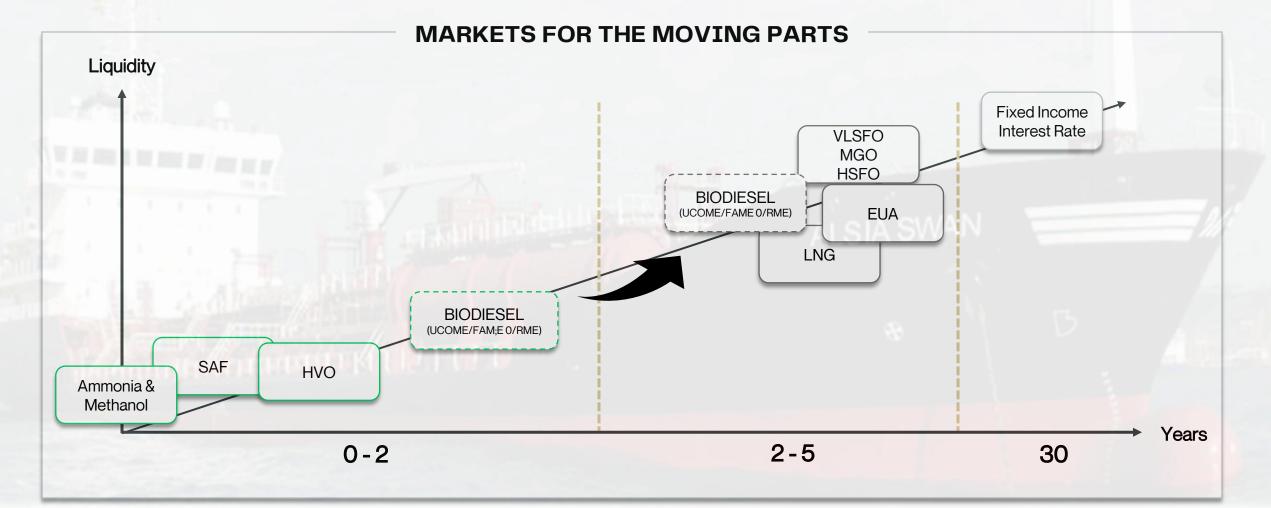
Complex task to optimize fuelmix – lots of moving parts

Pointing 30 years out in time (80% GHG reduction)

Short-, medium- and long-term optimization

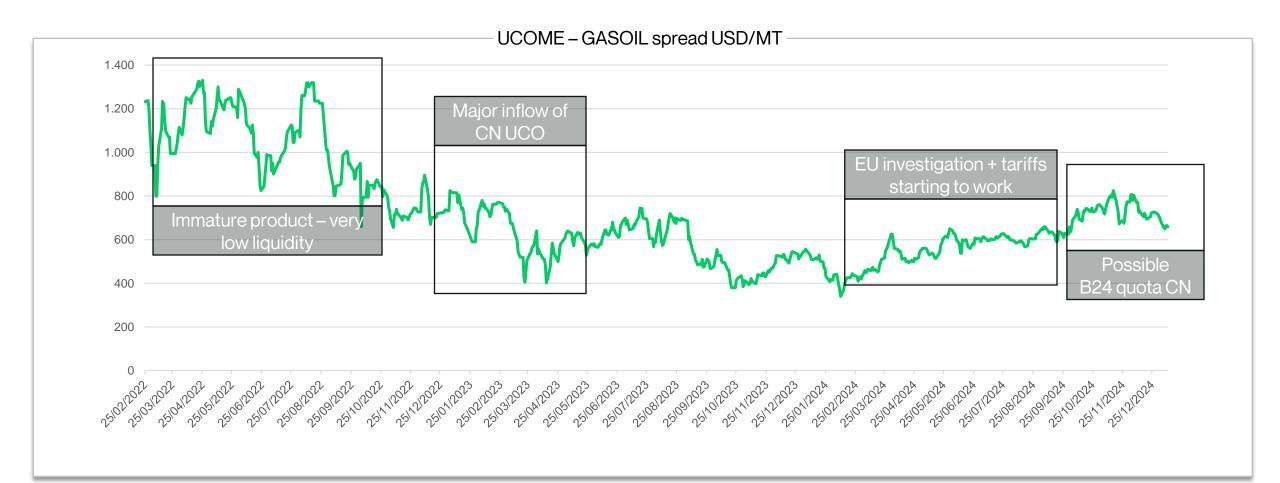

Approach: run cost scenarios given timehorizon, your fleet composition + forward curves

Additionally, consider regulation, pooling, banking, and borrowing.



Apply hedging strategy to lock in price risk you do not like

FORWARD MARKETS | TENOR & LIQUIDITY



BIOFUELS MARKETS | OVERVIEW

	Main Feedstocks	Fixing Provider	Liquidity, mt (Tradeable)	Tenor ICE GRM capabilities	Open Interest Monthly contract size 100t (ICE)
RME – Rapeseed Oil Methyl Ester	Rapeseed	Argus (Platts)	1k – 10/15k	Up to 18m GRM 36-60m	10.500 approx. 1m MT
FAME 0 – Fatty Acid Methyl Ester 0°C	Soybean, Veggie oil, Animal fat and tallow	Argus (Platts)	1k – 10/15k	Up to 18m GRM 36-60m	11.000
UCOME – Used Cooking Oil Methyl Ester	Used Cooking Oil (UCO)	Argus	1k – 10/15k	Up to 18m GRM 36-60m	11.300
HVO – Hydrotreated Vegetable Oil	UCO, RME, Vegetabel oil, Animal fats, Waste	Argus	500mt – 2k	Up to 9-12m GRM 12-18m	945 contracts
SAF – Sustainable Aviation Fuel	UCO, RME, Vegetable oil, Animal fats, Waste	Argus	500mt-1kt	1-3 months	-
E-methanol	Green Hydrogen	Weekly price assessment by Argus	-	-	-

PRICE DRIVERS UCOME

BENEFITS OF BIOFUELS FOR MARINE

Drop-in fuel that can be used in existing ship engines without modifications to the engine

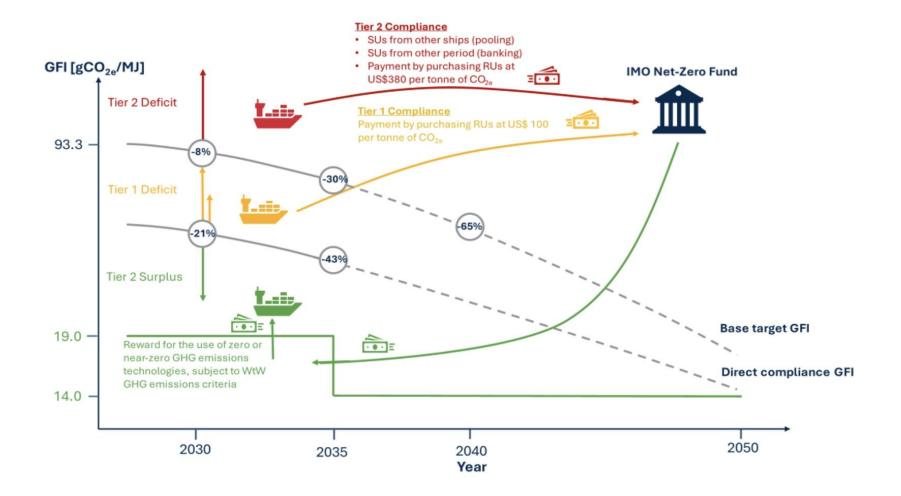
Globally tested by laboratories, shipping companies and bunker suppliers

Approved by most OEM & accepted by IMO in blends up to B100

ISCC certification ensures compliance with sustainability criteria throughout the entire supply chain

Excellent fuel characteristics

- Better ignition and combustion properties
- Improved lubricity and good cold flow properties
- Reduction in Particulate Matters and Black Carbon
- ✓ Reduction in GHG emission

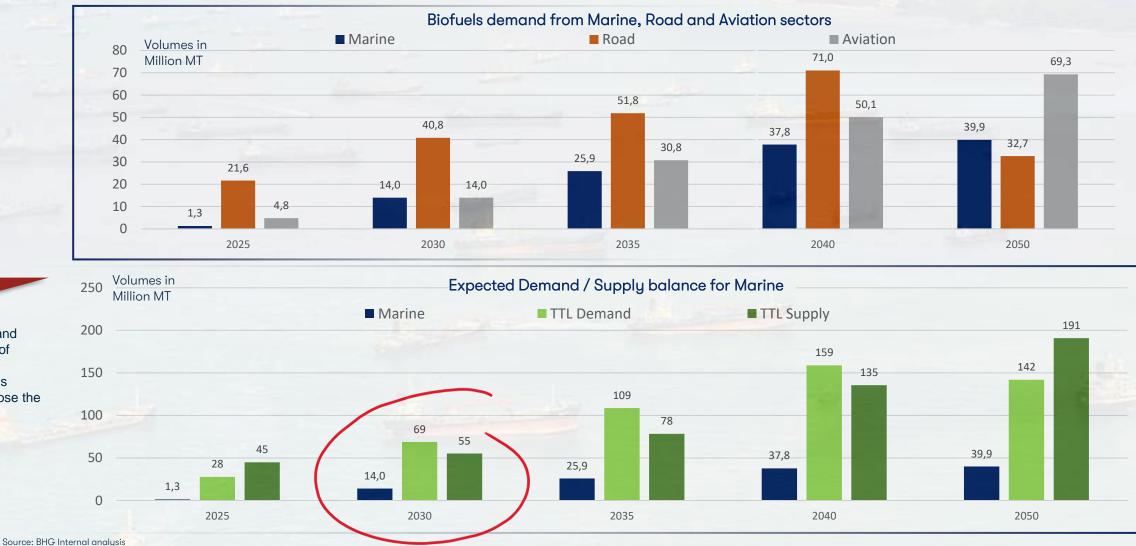

Proven pathway to IMO and FuelEU Maritime compliance

NASSAU

Helps fulfil customers ESG targets and sustainability linked loans

IMO SHUFFLES ALL? CANCEL FUEL EU MARITIME?? IMO NET-ZERO GFI

IMO NET-ZERO FRAMEWORK (EXAMPLE)


	Fuel	VLSFO	MGO	HSFO	LNG DF SS	Bio LNG DF SS	B30 VLSFO	B100	LC Methanol	LCAmmonia		
	WtW GHG Intensity	95.48	93.93	92.78	76.09	1.40	74.47	16.37	19.00	19.00		
			1				-					
	Fuel Cost (\$/MT)	500	650	420	620	2050	620	1500	950	900	SU (\$/CO2eq)	300
	RU2 Cost (\$)	90	71	49	0	0	0	0	0	0	ZNZ reward (\$/CO2eq)	400
	RU1 Cost (\$)	49	52	49	0	0	0	0	0	0		
2028	SU (\$)	0	0	0	-19	-1095	-35	-678	-349	-326	Fuel type	VLSFOeq factor
	ZNZ reward (\$)	0	0	0	0	-1460	0	-904	-465	-435	VLSFO	1
	Total Cost (\$)	639	773	518	601	-505	585	-82	136	139	HSFO	1.029
	Total Cost (\$) VLSFOeq	639	751	533	519	-437	618	-92	284	310	MGO	0.972
	· · ·		-		-	·			•		LNG	0.865
	Fuel Cost (\$/MT)	525	680	440	650	2600	950	1900	1000	1000	B30 VLSFO	1.056
2030	RU2 Cost (\$)	147	131	106	0	0	0	0	0	0	B100	1.122
	RU1 Cost (\$)	49	52	49	11	0	3	0	0	0	Methanol	2.085
	SU (\$)	0	0	0	0	-1041	0	-636	-327	-305	Ammonia	2.231
	ZNZ reward (\$)	0	0	0	0	-1388	0	-849	-435	-407		
	Total Cost (\$)	721	863	595	661	170	953	415	238	288		
	Total Cost (\$) VLSFOeq	721	839	612	572	147	1006	465	496	642	Indicative values	

VLSFO, MGO and HSFO – Default factors based on MEPC 391(81) LNG WtT – 17.4 gCO2eq/MJ (not confimed and not in MEPC 391(81) Bio-LNG – 0 gCO2eq/MJ on PoS and using same WtW formula as FEUM Biofuel (FAME) – 84% GHG savings on PoS and using same WtW formula as FEUM Methanol – LCV from FEUM

Disclaimer: Please be advised that the above information is provided to attendees of this presentation for illustrative and information purposes only and does not constitute the expression of any opinion on future pricing trends by BH. BH does not guarantee the accuracy nor completeness of this information and no reliance should be placed thereon. BH disclaims any liability in respect of the reliance by any person on the information so provided.

MARINE BIOFUELS* DEMAND/SUPPLY BALANCE

WITH INCREASING DEMAND FROM COMPETING SECTORS, CONVENTIONAL BIOFUELS ARE EXPECTED TO BE SHORT AS OF 2030, IF NOT EARLIER

* Considering only 2nd and 3rd generation feedstocks (RED II Annex IX A and B)

21 **not factoring in LNG dual fuel vessels

Accessing and processing of

alternative

supply gap

feedstocks is

crucial to close the

*** Fuel EU Maritime excludes 1st generation feedstocks. IMO requires min. 65% GHG savings of biofuel.

THANK YOU ALL FOR YOUR TIME

We wish you a pleasant day!

But before you go...

any quest?ons

Contact Information:

Søren Krogh Hansen: skha@global-riskmanagement.com

GRM Sales: hedging@global-riskmanagement.com